Abstract

The borehole drilling distance is short in soft and gas outburst-prone coal seams because of drill pipe jamming induced by cuttings accumulating in the borehole, hindering coal mine gas hazard prevention and utilization. A surface multi-hole (SMH) drill pipe composed of a bearing layer, fluid layer, and anti-sparking layer was proposed preliminarily, where several sieve holes were also set. To study the process of drilling cuttings in boreholes entering into the inner hole of an SMH drill pipe and its influencing factors, mechanical model analysis, CFD-DEM simulation, and a physical experiment were conducted. Our research results show the cutting entering region (CER) of the SMH drill pipe shrinks with the rotary speed, expands with the external extrusion force, and is offset with the sieve hole inclination angle. The drilling cuttings migrate and accumulate over time between the borehole wall and SMH drill pipe, which increases their compressive forces and induces increases in the mass and diameter of those entering into the sieve holes. The sieve hole diameter and depth are critical factors impacting the drilling cuttings entering into the sieve holes, which is also related to an appropriate rotary speed of the drill pipe. Finally, SMH drill pipes with a sieve hole diameter of 10 mm, inclination angle of 10°, and depth of 8 mm were determined and trial-manufactured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call