Abstract
AbstractLa1–xSrxCo1–yFeyO3–δ (LSCF) fibers are synthesized through the single‐needle electrospinning method. The formation of nanofibers is a function of the operating parameters, i.e., rotational speed of the support, solution feeding rate, and operating voltage, which are investigated experimentally in this work. The results show that a rotational speed of 750 rpm, a solution feeding rate of 0.5 mL h−1, and an operating voltage of 17 kV allow to obtain tissues with an average fiber diameter of 0.590 μm and porosity around 50%. The subsequent calcination processes are investigated through thermogravimetric analysis (TGA), which shows exothermic peaks due to solvent evaporation, debinding and perovskite structure formation, and suggest to perform calcination slowly in the temperature range 520–820 K. A fiber calcination process is carried out with a heating rate of 0.3 K min−1. Calcined fibers appear unbroken and visibly shrunk (post‐calcination average diameter 0.31 μm), with a porosity of the calcined tissue of 51%. The morphological chacteristics of the LSCF calcined tissues are very promising for application in intermediate temperature solid oxide fuel cell (IT‐SOFC) electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.