Abstract

Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

Highlights

  • The course of severe neurological events like subarachnoid hemorrhage (SAH) and traumatic brain injury is influenced by two main pathophysiological principles: (A) the primary injury sustained at the time of impact which is mostly irreversible and not primary object to treatment [1], (B) the secondary injury consisting of cytotoxic and vasogenic edema with increased intracranial pressure (ICP), reduced cerebral blood flow with consecutive brain ischemia, and insufficient oxygenation leading to programmed cell death of neurons that can be detected from hours to days following injury and may contribute to neurological dysfunction [2,3,4]

  • Recent studies indicated that a deviation from the putatively optimal cerebral perfusion pressure (CPP) based on the function of cerebral autoregulation will lead to significantly worse outcome of the patients [12]

  • This requires an array of different monitoring techniques for the assessment of intracranial pressure (ICP), oxygenation status, and metabolism [14, 15] leading to an immense volume of multimodal datasets frequently overwhelming the treating physician [16]

Read more

Summary

Introduction

The course of severe neurological events like subarachnoid hemorrhage (SAH) and traumatic brain injury is influenced by two main pathophysiological principles: (A) the primary injury sustained at the time of impact which is mostly irreversible and not primary object to treatment [1], (B) the secondary injury consisting of cytotoxic and vasogenic edema with increased intracranial pressure (ICP), reduced cerebral blood flow with consecutive brain ischemia, and insufficient oxygenation leading to programmed cell death of neurons that can be detected from hours to days following injury and may contribute to neurological dysfunction [2,3,4]. Since the biological changes leading to secondary injury are highly individual [6], a recent consensus has defined the necessity for patient specific treatment protocols in contrast to a rigid all size fits all approach [7] In this circumstance, the cerebral pressure autoregulation maintaining a continuous cerebral blood flow despite variations of systemic arterial pressure is of paramount importance [8, 9]. An individualized treatment strategy accounting for the autoregulation status of the patient is necessary [13] This requires an array of different monitoring techniques for the assessment of intracranial pressure (ICP), oxygenation status, and metabolism [14, 15] leading to an immense volume of multimodal datasets frequently overwhelming the treating physician [16].

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call