Abstract
In the offshore oil industry, FPSO (floating, production, storage and offloading) units play a leading role for the production, processing and storage of oil. The hull girder strength of FPSO, which is related to the safety and economic aspects, is usually designed based on engineers’ experience. In this study, a novel method is presented to optimize the FPSO design parameters which mainly affect the hull girder strength. The proposed method employs an improved fruit fly optimization algorithm (IFOA) and IFOA-BP model which combines IFOA and back-propagation (BP) neural network. Firstly, the IFOA-BP model maps the nonlinear relations between the input and output variables, and then the reserved network can predict the stress value of critical position and the self-weight of FPSO for any set of design parameters. The numerical results indicate that the IFOA-BP model has a remarkable predication ability. Further, the reserved IFOA-BP model and the proposed IFOA is used to search for the optimal set of design parameters. Compared with the contrastive design, the optimal set of design parameters obtained using the proposed method gives lower stress value of critical position and smaller self-weight of FPSO. The optimization results show the advance and superiority of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.