Abstract

To improve the handling stability as well as reduce the steering energy consumption of heavy commercial vehicle, a novel electric-hydraulic hybrid power steering (E-HHPS) system with multiple steering modes is presented, which enables the vehicle to acquire the steering handiness at low speed and better steering road feeling at high speed by switching the actuator unit according to the current working condition. In this paper, to achieve the design goals of E-HHPS system, which are to reduce steering energy consumption and improve steering stability, three evaluation indexes of E-HHPS system are established, which convert the E-HHPS system parameter optimization problem into a multi-objective optimization model. Because it is difficult to approximate the Pareto front of the transformed optimization model by basic algorithms, a multi-objective particle swarm optimization algorithm based on adaptive decomposition (MOPSO/AD) is proposed. Test functions are used to verify the performance of the algorithm and test results show that the MOPSO/AD algorithm has better comprehensive performance and stability compared with the basic MOPSO algorithm and MOEA/D algorithm. The MOPSO/AD algorithm is applied to solve the E-HHPS system optimization model and simulation results show that the proposed MOPSO/AD algorithm has better convergence in solving the E-HHPS parameter optimization problem compared with MOPSO, which enables the optimized E-HHPS system has good handling stability and low steering energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.