Abstract

To avoid the issues of seeds lying atop straw, where the seeds cannot germinate, during no-till maize seeding, a seed furrow cleaning device is proposed. The device uses rotating spring teeth and a curved sliding shovel to clear the straw from the seed furrow to the outside. The critical components of the side throwing mechanism, rotary disc and spring teeth design are analyzed, and the value range of the installation inclination angle, rotating speed and bending angle of spring teeth are determined. The force on the straw at the moment of starting to touch and throw it is analyzed theoretically in the three installation directions of forward inclination, radial and backward inclination on the rotary disc, and the backward inclination of the spring teeth is determined. A simulation model of the seed furrow cleaning device is established by using the discrete element method simulation software; the forwarding speed, rotating speed, installation inclination angle, and bending angle of spring teeth are used as influencing factors to carry out single-factor experiments. The influence characteristics of different parameters on seed ditch cleaning effect are analyzed from the aspects of straw cleaning quantity and soil disturbance. A field validation experiment is carried out, and the results show that when rotating speed is 180 r/min, installation inclination angle of spring teeth is 40°, and bending angle is 30°, the straw cleaning rate is 82.26%. The research could provide references to develop the no-till seeder for maize seeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.