Abstract
As an environmentally friendly method, water jet (WJ) technology plays a significant role in the field of remanufacturing cleaning. The cleaning capacity of a WJ is severely restricted by the water pressure, while the impact force will be too large and may damage the cleaned substrate as well as cause energy waste if the pressure is too high. However, by adding abrasives, the cleaning capacity of a low-pressure water jet (LPWJ) will be considerably improved. Although abrasive water jet (AWJ) technology has been used in mechanical machining for decades, very limited research work can be found in the literature for remanufacturing cleaning. In this paper, the role of abrasives in low-pressure abrasive water jet (LPAWJ) cleaning was described. Cleaning performance with different parameters (abrasive feed rate condition, water pressure and standoff distance) in paint removal was experimentally investigated by using the Taguchi design of experiment. The experimental results indicated that the water pressure was the most dominant factor and the optimal parameter combination was the second feed rate condition, 9 MPa water pressure and 300 mm standoff distance. The influence law between the cleaning performance and various factors was explored, which can provide remanufacturers with directions in selection of the optimal parameters in the LPAWJ cleaning process. By designing contrast experiments, the results showed that the cleaning capacity of an LPAWJ is better than that of a pure LPWJ and the residual effect in terms of changes in surface roughness, residual stress and morphology is a little larger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.