Abstract

To improve the battery state of charge (SOC) of the electric vehicle (EV), this paper proposes a master–slave electro-hydraulic hybrid electric vehicle (MSEH-HEV). The MSEH-HEV uses a planetary row as the core transmission component to realize the interconversion between mechanical energy, hydraulic energy and electrical energy. Meanwhile, this paper introduces the six working modes in vehicle operation, matches the parameters of key components to the requirements of the vehicle’s performance and designs a rule-based control strategy to dominate the energy distribution and the operating mode switching. The research uses AMESim and Simulink to perform a co-simulation of the MSEH-HEV, and the superiority of MSEH-HEV is testified by comparing it with an AMESim licensed EV. The simulation results show that in the Economic Commission for Europe (ECE) and the Extra Urban Driving Cycle (EUDC), the MSEH-HEV has a 15% reduction in battery consumption, and the motor peak torque is greatly reduced. Moreover, a fuzzy control strategy is designed to optimize the rule-based control strategy. Ultimately, the optimized strategy further reduces the motor torque while maintaining the battery SOC. In this paper, the applicable research consists of the necessary references for the design matching of future electro-hydraulic hybrid electricity systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.