Abstract

AbstractIn this article, the parameter learning problem is studied for stochastic Boolean networks (SBNs). Both the measure noise and the system noise are assumed to be white and modeled by sequences of Bernoulli distributed stochastic variables which are mutually independent. An algebraic representation of the SBNs is obtained by taking advantage of vector expression of logic variable and applying the semi‐tensor product technique. Consequently, the parameter learning problem is reformulated as an optimization problem that makes it possible to identify the system matrices of SBNs in an efficient computation way. Subsequently, properties of forward and backward probabilities are investigated, and the EM algorithm is utilized to learn the model parameters from time series data. Finally, a numerical experiment is presented to show the usefulness of the designed parameter learning algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.