Abstract
In pattern recognition, data integration is an important issue, and when properly done, it can lead to improved performance. Also, data integration can be used to help model and understand multimodal processing in the brain. Amari proposed α-integration as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), enabling an optimal integration in the sense of minimizing the α-divergence. It also encompasses existing integration methods as its special case, for example, a weighted average and an exponential mixture. The parameter α determines integration characteristics, and the weight vector w assigns the degree of importance to each measure. In most work, however, α and w are given in advance rather than learned. In this letter, we present a parameter learning algorithm for learning α and ω from data when multiple integrated target values are available. Numerical experiments on synthetic as well as real-world data demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.