Abstract

It is essential to develop an accurate model of proton exchange membrane fuel cell (PEMFC) for a reliable operation and analysis, in which unknown parameters usually need to be determined. The inherent nonlinear, strong coupling, and diversification of PEMFC model seriously hinder traditional methods to identify the parameters. For the sake of overcoming these thorny obstacles, Levenberg-Marquardt backpropagation (LMBP) algorithm based on artificial neural networks (ANNs) is proposed for PEMFC parameter identification. Furthermore, the performance of LMBP is thoroughly evaluated and compared with four typical meta-heuristic algorithms under three cases. Simulation results indicate that LMBP performs a higher accuracy and faster speed for parameter identification. In particular, accuracy and convergence speed can achieve as much as 99.8% and 95.9% growth via LMBP, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.