Abstract

This article presents an approach based on state observers to identify the parameters of an unknown periodic force exerted on a mechanical system. This approach comprises two stages and can be executed in real time by using only displacement measurements. The first stage goal is the estimation of the coefficients of a Fourier series that approximates the periodic force. From the estimated coefficients, the phase and the amplitude of the signal can be simultaneously computed; and from the estimated force, in a second stage, the frequencies of the signal can be estimated. To perform the tasks at each stage, two state observers were designed. To show the applicability of the proposed approach, the reconstruction of a wave force affecting a marine structure as well as the computation of the amplitude and phase of its spectral components was taken as case of study. The performance of the state observer was examined by means of simulations and off-line tests carried out with experimental data. Such data were obtained by executing laboratory tests and measuring waves in the Caribbean sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.