Abstract
An efficient, adaptive differential evolution (DE) algorithm is proposed in which DE parameter adaptation is implemented. A ranking-based vector selection and crossover rate repairing technique are also presented. The method is referred to as IJADE (Improved Jingqiao Adaptive DE). To verify the performance of IJADE, the parameters of a simple SOFC electrochemical model that is used to control the output performance of an SOFC stack are identified and optimized. The SOFC electrochemical model is built to provide the simulated data. The results indicate that the proposed method is able to efficiently identify and optimize model parameters while showing good agreement with both simulated and experimental data. Additionally, when compared to other DE variants and other evolutionary algorithms, IJADE obtained better results in terms of the quality of the final solutions, robustness, and convergence speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.