Abstract
Time-series discord is widely used in data mining applications to characterize anomalous subsequences in time series. Compared to some other discord search algorithms, the direct search algorithm based on the recurrence plot shows the advantage of being fast and parameter free. The direct search algorithm, however, relies on quasi-periodicity in input time series, an assumption that limits the algorithm's applicability. In this paper, we eliminate the periodicity assumption from the direct search algorithm by proposing a reference function for subsequences and a new sampling strategy based on the reference function. These measures result in a new algorithm with improved efficiency and robustness, as evidenced by our empirical evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.