Abstract

We study the task of determining parameters of dynamical systems from their time series using variations of reservoir computing. Averages of reservoir activations yield a static set of random features that allows us to separate different parameter values. We study such random feature models in the time and frequency domain. For the Lorenz and Rössler systems throughout stable and chaotic regimes, we achieve accurate and robust parameter extraction. For vibration data of centrifugal pumps, we find a significant ability to recover the operating regime. While the time domain models achieve higher performance for the numerical systems, the frequency domain models are superior in the application context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.