Abstract
The case of a singular Fisher information matrix (FIM) represents a significant complication for the theory of the Cramer-Rao lower bound (CRB) that is usually handled by resorting to the pseudoinverse of the Fisher matrix. We take a different approach in which the CRB is derived as the solution to an unconstrained quadratic maximization problem, which enables us to handle the singular case in a simple yet rigorous manner. When the Fisher matrix is singular, except under unusual circumstances, any estimator having the specified bias derivatives that figure in the CRB must have infinite variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.