Abstract

In this work, and based on numerical optimization techniques, constitutive parameters for viscoelastic materials are determined using a inverse problem formulation. The optimization methodology is based on experimental results obtained in the frequency domain, for a CFRP‐Carbon Fibre Reinforced Polymer, through DMA‐Dynamic Mechanical Analysis. The relaxation modulus of viscoelastic materials is given by a summation of decaying exponentiating functions, known as Prony series. Prony series, in time domain, are normally used to determine constitutive parameters for viscoelastic materials. In this paper, using the Fourier transform of the time domain Prony series, a nonlinear constrained least square problem based on Prony series representations of storage and loss modulus, for the considered material, is analyzed. A case study considering the estimation of 2N viscoelastic parameters, N = 1,2,⋯11, is taken as a benchmark. The nonlinear constrained least square problems are solved using global and local optimi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call