Abstract

Consider a system which is made up of multiple components connected in a series. In this case, the failure of the whole system is caused by the earliest failure of any of the components, which is commonly referred to as competing risks. In certain situations, it is observed that the determination of the cause of failure may be expensive, or may be very difficult to observe due to the lack of appropriate diagnostics. Therefore, it might be the case that the failure time is observed, but its corresponding cause of failure is not fully investigated. This is known as masking. Moreover, this competing risks problem is further complicated due to possible censoring. In practice, censoring is very common because of time and cost considerations on experiments. In this paper, we deal with parameter estimation of the incomplete lifetime data in competing risks using the EM algorithm, where incompleteness arises due to censoring and masking. Several studies have been carried out, but parameter estimation for incomplete data has mainly focused on exponential models. We provide the general likelihood method, and the parameter estimation of a variety of models including exponential, s-normal, and lognormal models. This method can be easily implemented to find the MLE of other models. Exponential and lognormal examples are illustrated with parameter estimation, and a graphical technique for checking model validity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.