Abstract
Fitting biophysical models to real noisy data jointly with extracting fundamental biophysical parameters has recently stimulated tremendous studies in computational neuroscience. Hodgkin-Huxley (HH) neuronal model has been considered as the most detailed biophysical model for representing the dynamical behavior of the spiking neurons. In this paper, we derive, for the first time, the dual extended Kalman filtering (DEKF) approach for the HH neuronal model to track the dynamics and estimate the parameters of a single neuron from noisy recorded membrane voltage. As unscented Kalman filter (UKF) has been already applied to the HH model, a quantitative comparison between these methods is accomplished in our simulation for different signal to observation noise ratios. Our simulations demonstrate the high accuracy of DEKF in the prediction and estimation of hidden states and unknown parameters of the HH neuronal model. Faster implementation of DEKF (than UKF) makes it particularly useful in dynamic clamp technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.