Abstract

Fractional differential equations are used to construct mathematical models and can describe the characteristics of real systems. In this paper, the parameter estimation problem of a fractional Wiener system is studied by designing linear filters which can obtain smaller tunable parameters and maintain the stability of the parameters in any case. To improve the identification performance of the stochastic gradient algorithm, this paper derives two modified stochastic gradient algorithms for the fractional nonlinear Wiener systems with colored noise. By introducing the forgetting factor, a forgetting factor stochastic gradient algorithm is deduced to improve the convergence rate. To achieve more efficient and accurate algorithms, we propose a multi-innovation forgetting factor stochastic gradient algorithm by means of the multi-innovation theory, which expands the scalar innovation into the innovation vector. To test the developed algorithms, a fractional-order dynamic photovoltaic model is employed in the simulation, and the dynamic elements of this photovoltaic model are estimated using the modified algorithms. Concurrently, a numerical example is given, and the simulation results verify the feasibility and effectiveness of the proposed procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.