Abstract
Conditional Random Field (CRF), a type of conditional probability model, has been widely used in Nature Language Processing (NLP), such as sequential data segmentation and labeling. The advantage of CRF model is the ability to express long-distance-dependent and overlapping features. However, the model parameter estimation of CRF is very time-consuming because of the large amount of calculation. This paper describes the method that use of MapReduce model to parallel estimate the model parameters of CRF in open-source and distributed computing framework that provided by Hadoop. Experiments demonstrated that the proposed method can effectively reduce the time complexity of model parameter estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.