Abstract
The goal of this paper is twofold: firstly, to provide a novel mathematical model that describes the kinematic chain of motion of the human fingers based on Lagrangian mechanics with four degrees of freedom and secondly, to estimate the model parameters using data from able-bodied individuals. In the literature there are a variety of mathematical models that have been developed to describe the motion of the human finger. These models offer little to no information on the underlying mechanisms or corresponding equations of motion. Furthermore, these models do not provide information as to how they scale with different anthropometries. The data used here is generated using an experimental procedure that considers the free response motion of each finger segment with data captured via a motion capture system. The angular data collected are then filtered and fitted to a linear second-order differential approximation of the equations of motion. The results of the study show that the free response motion of the segments is underdamped across flexion/extension and ad/abduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.