Abstract
A new multidimensional model for wet granulation is presented, which includes particle coalescence, compaction, reaction, penetration, and breakage. In the model, particles are assumed to be spherical and consist of two kinds of solid, two kinds of liquid, and pore volume. The model is tested against experimental results (Simmons, Turton and Mort. Proceedings of Fifth World Congress on Particle Technology, paper 9d, 2006) from the granulation of sugar particles with different PEG based binders in a bench scale mixer, being carried out for different impeller speeds, binder compositions and process durations. The unknown rate constants for coalescence, compaction, reaction, and breakage were fitted to the experiments and the sensitivities of the mass of agglomerates were calculated with respect to these parameters. This is done by employing experimental design and a response surface technique. The simulations with the established set of parameters show that the model predicts the trends, not only in time, but also for crucial process conditions such as impeller speed and the binder composition. As such it is found that more viscous binder promotes the formation of porous particle ensembles. Furthermore, the statistics of the different events such as collisions, coalescence and breakage reveal for instance that successful coalescence events outnumber the breakage events by a factor of up to three for low impeller speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.