Abstract

This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call