Abstract

In this paper we apply to gravitational waves from non-spinning binary systems a recently intro- duced frequentist methodology to calculate analytically the error for a maximum likelihood estimate (MLE) of physical parameters. While existing literature focuses on using the Cramer Rao Lower bound (CRLB) and Monte Carlo simulations, we use a power expansion of the bias and covariance in inverse powers of the signal to noise ratio. The use of higher order derivatives of the likelihood function in the expansions makes the prediction also sensitive to the secondary lobes of the MLE probability distribution. We discuss conditions for validity of the CRLB and predict new features in regions of the parameter space currently not explored. For example, we see how the bias can become the most important contributor to the parameters' errors for high mass systems (200M and above).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call