Abstract

Bayesian-inference-based approaches, in particular the random-walk Markov Chain Monte Carlo (MCMC) method, have received much attention recently for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art development in the field of MCMC, has become popular in recent years. It utilizes Hamiltonian dynamics for indirect but much more efficient drawings of the model parameters. We described the principle of the Hamiltonian MCMC for inversion problems in X-ray scattering analysis by estimating high-dimensional models for several motivating scenarios in small-angle X-ray scattering, reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with appropriate preconditioning can deliver superior performance over the random-walk MCMC, and thus can be used as an efficient tool for the statistical analysis of the parameter distributions, as well as model predictions and confidence analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.