Abstract

The paper addresses a systematic procedure to deal with state and parameter uncertainty estimation for nonlinear time-varying systems. A robust observer with respect to states, inputs and perturbations is designed, using a Takagi–Sugeno (T–S) approach with unknown premise variables. Tools of the linear automatic to the nonlinear systems are applied, using the Linear Matrix Inequalities optimization. The observer estimates the uncertainties, the states and minimizes the effect of external disturbances on the estimation error. The uncertainties are modelled in a polynomial way which allows considering the uncertainty estimation as a fault detection problem. The residual sensitivity to faults while maintaining robustness according to a noise signal is handled by H∞/H− approach. The method performance is illustrated using the three-tank system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.