Abstract

Consider a stochastic system of multiple subsystems, each subsystem having binary (“0 or 1”) output. The full system may have general binary or non-binary (e.g., Gaussian) output. Such systems are widely encountered in practice, and include engineering systems for reliability, communications and sensor networks, the collection of patients in a clinical trial, and Internet-based control systems. This paper considers the identification of parameters for such systems for general structural relationships between the subsystems and the full system. Maximum likelihood estimation (MLE) is used to estimate the mean output for the full system and the “success” probabilities for the subsystems. The MLE approach is well suited to providing asymptotic or finite-sample confidence bounds through the use of Fisher information or bootstrap Monte Carlo-based sampling. Three examples are presented to illustrate the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.