Abstract

We study parameter estimation problem for diagonalizable stochastic partial differential equations driven by a multiplicative fractional noise with any Hurst parameter H ∈ (0, 1). Two classes of estimators are investigated: traditional maximum likelihood type estimators, and a new class called closed-form exact estimators. Finally the general results are applied to stochastic heat equation driven by a fractional Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.