Abstract

We study the problem of parameter estimation for time-series possessing two, widely separated, characteristic time scales. The aim is to understand situations where it is desirable to fit a homogenized single-scale model to such multiscale data. We demonstrate, numerically and analytically, that if the data is sampled too finely then the parameter fit will fail, in that the correct parameters in the homogenized model are not identified. We also show, numerically and analytically, that if the data is subsampled at an appropriate rate then it is possible to estimate the coefficients of the homogenized model correctly.The ideas are studied in the context of thermally activated motion in a two-scale potential. However the ideas may be expected to transfer to other situations where it is desirable to fit an averaged or homogenized equation to multiscale data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.