Abstract

The signal source generates angular expansion in space due to scattering, reflection and other phenomena in a complex environment, which requires a distributed signal model for processing. This paper extends the method of joint angular estimation for coherently distributed (CD) sources consisting of noncircular signals to the impulsive noise scenario. In an actual wireless passive positioning environment, impulsive noise is very common. However, most algorithms only consider Gaussian noise environments and are not suitable for angle estimation in impulsive noise scenarios. This paper proposes the generalized complex correntropy (GCC) and shows that it can eliminate the effects of outliers in an impulsive noise environment. This is because the complex correntropy is an effective tool to analyze higher-order statistical moments in the impulsive noise environment. In order to improve the accuracy of the estimation, we construct a GCC matrix based on extended array output and apply the subspace techniques to extract the angle information of the CD noncircular sources. The simulation results show that the estimation performance of the proposed algorithms is better than the traditional algorithm applied to the noncircular CD sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.