Abstract

To address the challenges in estimating parameters of the widely applied Student-Lévy process, the study introduces two distinct methods: a likelihood-based approach and a data-driven approach. A two-step quasi-likelihood-based method is initially proposed, countering the non-closed nature of the Student-Lévy process's distribution function under convolution. This method utilizes the limiting properties observed in high-frequency data, offering estimations via a quasi-likelihood function characterized by asymptotic normality. Additionally, a novel neural-network-based parameter estimation technique is advanced, independent of high-frequency observation assumptions. Utilizing a CNN-LSTM framework, this method effectively processes sparse, local jump-related data, extracts deep features, and maps these to the parameter space using a fully connected neural network. This innovative approach ensures minimal assumption reliance, end-to-end processing, and high scalability, marking a significant advancement in parameter estimation techniques. The efficacy of both methods is substantiated through comprehensive numerical experiments, demonstrating their robust performance in diverse scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call