Abstract

A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

Highlights

  • Many biological processes are modeled using ordinary differential equations (ODEs) that describe the evolution over time of certain quantities of interest

  • In E. coli, the heat shock response is implemented through an intricate architecture of feedback loops centered on the sigmafactor that regulates the transcription of the heat shock proteins under normal and stress conditions

  • We have presented a novel approach for parameter estimation and model selection in computational biology

Read more

Summary

Introduction

Many biological processes are modeled using ordinary differential equations (ODEs) that describe the evolution over time of certain quantities of interest. In general the equations will depend on several parameters. Some of them, such as reaction rates, and production and decay coefficients have a physical meaning. Others might come from approximations or reductions that are justified by the structure of the system and, they might have no direct biological or biochemical interpretation. In both cases, most of the parameters are unknown. It is usually possible to measure some of the other variables involved in the models (such as abundance of chemical species) using PCR, immunoblotting assays, fluorescent markers, and the like

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.