Abstract

AbstractWe present a novel framework to evaluate multi‐agent crowd simulation algorithms based on real‐world observations of crowd movements. A key aspect of our approach is to enable fair comparisons by automatically estimating the parameters that enable the simulation algorithms to best fit the given data. We formulate parameter estimation as an optimization problem, and propose a general framework to solve the combinatorial optimization problem for all parameterized crowd simulation algorithms. Our framework supports a variety of metrics to compare reference data and simulation outputs. The reference data may correspond to recorded trajectories, macroscopic parameters, or artist‐driven sketches. We demonstrate the benefits of our framework for example‐based simulation, modeling of cultural variations, artist‐driven crowd animation, and relative comparison of some widely‐used multi‐agent simulation algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.