Abstract

People live in a 3D world. However, existing works on person re-identification (re-id) mostly consider the semantic representation learning in a 2D space, intrinsically limiting the understanding of people. In this work, we address this limitation by exploring the prior knowledge of the 3D body structure. Specifically, we project 2D images to a 3D space and introduce a novel parameter-efficient omni-scale graph network (OG-Net) to learn the pedestrian representation directly from 3D point clouds. OG-Net effectively exploits the local information provided by sparse 3D points and takes advantage of the structure and appearance information in a coherent manner. With the help of 3D geometry information, we can learn a new type of deep re-id feature free from noisy variants, such as scale and viewpoint. To our knowledge, we are among the first attempts to conduct person re-id in the 3D space. We demonstrate through extensive experiments that the proposed method: (1) eases the matching difficulty in the traditional 2D space; 2) exploits the complementary information of 2D appearance and 3D structure; 3) achieves competitive results with limited parameters on four large-scale person re-id datasets; and 4) has good scalability to unseen datasets. Our code, models, and generated 3D human data are publicly available at https://github.com/layumi/person-reid-3d.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call