Abstract

Fractured karstic carbonate reservoirs have obvious multi-scale characteristics and severe heterogeneity due to the development of abundant karst caves and fractures with different scales. Darcy and non-Darcy flows coexist due to this property. Therefore, selecting the appropriate flow equations for different regions in the numerical simulation of fluid flows, particularly two-phase and multiphase flows, is a critical topic. This paper compares and analyses the displacement distance differences of waterfront travel using the Darcy, Forchheimer and Barree–Conway equations, as well as analyzes the influence of the Forchheimer constant, fluid viscosity, flow rate and absolute permeability on inertia action based on the Buckley–Leverett theory. The results show that the Forchheimer number/Reynolds number of water/oil two-phase flow is not a constant value and varies with water saturation, making it difficult to determine whether the inertial action should be considered solely based on these values; the influence of inertial action can be measured well by comparing the difference between the displacement distances of the waterflood front, and the quantitative standard is given for the selection of the flow equation of different regions by calculating the allowable error of the displacement distance of the waterflood front. The magnitude of the inertial effect is affected by the physical properties of the fluid and reservoir medium and the fluid velocity. The smaller the difference in the viscosity of the oil/water fluid, the smaller the inertial effect is. This technique was used a preliminary attempt to analyze the fractured karstic carbonate reservoirs at Tarim, and the results confirmed the validity of the method described in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call