Abstract

With advent in permanent magnet synchronous machine (PMSM) structure and inverter topologies, accurate parameter determination is of significance for high-performance control, analysis, and making critical decisions on inter-dependent design parameter variations for machine optimization. However, the machine parameters, including permanent magnet (PM) flux linkage and dq -axis inductances, vary during operation with machine nonlinearities such as magnetic saturation, temperature rise, and the introduction of spatial- and time-harmonic contents contributing toward inaccuracies during machine parameter determination. While classical dq -axis modeling fails to accommodate non-sinusoidal winding distributions and the effects of temperature rise, finite-element analysis (FEA) is computationally expensive and coupling of electromagnetic and thermal analysis including current harmonics becomes complex. Therefore, in this paper, a novel magnetic equivalent circuit model incorporating the effects of temperature rise and current harmonics has been developed for parameter determination of PMSMs. A lumped thermal model is implemented to determine the temperatures at each point of the machine. The proposed coupled electromagnetic and thermal model has been validated for various operating conditions of a fractional-slot distributed wound laboratory PMSM with FEA and experimental investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call