Abstract

In recent years humanoid robots have been widely used in toy, performance, education and other service industries, but most biped robots walk slowly and have poor stability. The reason is that the driver parameters of the robot cannot properly match the walking gait algorithm, and the insufficient performance of the robot driver leads to the poor motion capability of the robot. In this paper, the optimization design process of biped robot parameters is studied and expounded, and its motion capability is improved by optimizing the driving parameters of the robot. Firstly, the contradiction between walking speed, stability and driver performance of biped robot is analysed. The performance evaluation functions of the three are further established, and the optimal parameter design to a certain extent is realized based on the multi-objective optimization method. Finally, combining with the physical simulation engine, the design parameters are simulated and checked, and the robot design process is completed through the guidance of simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.