Abstract

Recently, demand for contactless power transmission techniques has been growing in various industrial fields. Electromagnetic induction is able to transfer high power with high efficiency. Power transmission circuits typically consist of a paired coil and capacitance for improving the efficiency. The coil frequency and configuration that gives a high quality factor is essential for high-efficiency transmission because the maximum efficiency depends on the product of the coupling coefficient between the two coils and the quality factor of the coils. However, the matching with the load resistance also needs to be discussed. We therefore propose a circuit constructed by inserting a short-circuited LC into the receiving circuit, which we call the LC-booster method. This method is highly practical because it allows one to use coils with high quality factors and to adjust the circuit to match the load resistance. We examine the relationship between the capacitance in the short-circuited LC and the power transmission efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.