Abstract

For a nonautonomous linear equation v′=A(t)v in a Banach space with a nonuniform exponential dichotomy, we show that the nonlinear equation v′=A(t)v+f(t,v,λ) has stable invariant manifolds Vλ which are Lipschitz in the parameter λ provided that f is a sufficiently small Lipschitz perturbation. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, the above assumption is very general. We emphasize that passing from a classical uniform exponential dichotomy to a general nonuniform exponential dichotomy requires a substantially new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.