Abstract

Nonlinear internal waves in shallow water have significant acoustic impacts and cause three-dimensional ducting effects, for example, energy trapping in a duct between curved wavefronts that propagates over long distances. A normal mode approach applied to a three-dimensional idealized parametric model [Lin, McMahon, Lynch, and Siegmann, J. Acoust. Soc. Am. 133(1), 37-49 (2013)] determines the dependence of such effects on parameters of the features. Specifically, an extension of mode number conservation leads to convenient analytical formulas for along-duct (angular) acoustic wavenumbers. The radial modes are classified into five types depending on geometric characteristics, resulting in five distinct formulas to obtain wavenumber approximations. Examples of their dependence on wavefront curvature and duct width, along with benchmark comparisons, demonstrate approximation accuracy over a broad range of physical values, even including situations where transitions in mode types occur with parameter changes. Horizontal-mode transmission loss contours found from approximate and numerically exact wavenumbers agree well in structure and location of intensity features. Cross-sectional plots show only small differences between pattern phases and amplitudes of the two calculations. The efficiency and accuracy of acoustic wavenumber and field approximations, in combination with the mode-type classifications, suggest their application to determining parameter sensitivity and also to other feature models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call