Abstract

To address the challenge of parameter adjustment in complex environments, this paper introduces a transfer learning-based parameter control framework via deep reinforcement learning for multiobjective evolutionary algorithms (MOEAs). To avoid the requirement for accurate Pareto front information, this framework is proposed with comprehensive global-state information, including basic problem features, the relative position of individuals, the distribution of fitness value, and the grid-IGD. Building on this framework, four reinforced multiobjective evolutionary algorithms (r-MOEAs) are proposed and tested on four DTLZ benchmarks and eight WFG benchmarks. The results of the comparative analyses reveal that compared with the original MOEAs, the four r-MOEAs exhibit faster convergence and stronger robustness. It is also confirmed that our proposed parameter control framework has the capability to learn knowledge from different experiences and improve the performance of MOEAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call