Abstract

Recently, it has been shown that cross-correlating cosmic microwave background (CMB) lensing and three-dimensional (3D) cosmic shear allows to considerably tighten cosmological parameter constraints. We investigate whether similar improvement can be achieved in a conventional tomographic setup. We present Fisher parameter forecasts for a Euclid-like galaxy survey in combination with different ongoing and forthcoming CMB experiments. In contrast to a fully 3D analysis, we find only marginal improvement. Assuming Planck-like CMB data, we show that including the full covariance of the combined CMB and cosmic shear data improves the dark energy figure of merit (FOM) by only 3 per cent. The marginalized error on the sum of neutrino masses is reduced at the same level. For a next generation CMB satellite mission such as Prism, the predicted improvement of the dark energy FOM amounts to approximately 25 per cent. Furthermore, we show that the small improvement is contrasted by an increased bias in the dark energy parameters when the intrinsic alignment of galaxies is not correctly accounted for in the full covariance matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.