Abstract

Hot forming of high strength steel at elevated temperatures is an attractive technology to achieve the lightweight of vehicle body. The mechanical behavior of boron steel 22MnB5 strongly depends on the variation of temperature which makes the process design more difficult. In this paper, the Gurson–Tvergaard–Needleman (GTN) model is used to study the formability of 22MnB5 sheet at different temperatures. Firstly, the rheological behavior of 22MnB5 is analyzed through a series of hot tensile tests at a temperature range of 600-800 °C. Then, a detailed process to calibrate the damage parameters is given based on the response surface methodology and genetic algorithm method. The GTN model together with the damage parameters calibrated is then implemented to simulate the deformation and damage evolution of 22MnB5 in the process of high-temperature Nakazima test. The capability of the GTN model as a suitable tool to evaluate the sheet formability is confirmed by comparing experimental and calculated results. Finally, as a practical application, the forming limit diagram of 22MnB5 at 700 °C is constructed using the Nakazima simulation and Marciniak–Kuczynski (M–K) model, respectively. And the simulation integrated GTN model shows a higher reliability by comparing the predicted results of these two approaches with the experimental ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call