Abstract

In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.