Abstract
The aerospace electro-hydraulic servo simulator is used to simulate the air load received during flight, and is used for the performance test and acceptance test of aerospace servo actuators on the ground. The force loading accuracy of the load simulator is an important assessment index. Because the loading system and the actuator system to be tested are coupled together, the free displacement of the system to be tested during loading will bring huge disturbance to the loading system, thus how to suppress external interference has always been a hot issue in the control field. This paper addresses this issue under the influence of nonlinear friction and uncertain external disturbance. First, the exact mathematical model of the system is derived, and the characteristics of the system are described by the state equations. Second, in order to obtain the relevant parameters in the controller, the system parameters are identified. Third, the parameter adaptive sliding mode force control based on the reaching law is proposed, and the performance of the control algorithm is analyzed theoretically. Finally, the new control method is applied in the aerospace electro-hydraulic servo simulator, and the results show that the new control algorithm can suppress the external interference by 95% or more, and the control accuracy is more than 97%, which fully demonstrates the effectiveness of the control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.