Abstract

Mobile robots have played a vital role in the transportation industries, service robotics, and autonomous vehicles over the past decades. The development of robust tracking controllers has made mobile robots a powerful tool that can replace humans in industrial work. However, most of the traditional controller updates are time-based and triggered at every predetermined time interval, which requires high communication bandwidth. Therefore, an event-triggered control scheme is essential to release the redundant data transmission. This paper presents a novel parameter-adaptive event-trigger sliding mode to control a two-wheeled mobile robot. The adaptive control scheme ensures that the mobile robot system can be controlled accurately without the knowledge of physical parameters. Meanwhile, the event trigger sliding approach guarantees the system robustness and reduces resource usage. A simulation in MATLAB and an experiment are carried out to validate the efficiency of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call