Abstract

Spherical nanoparticles and fibres observable by cryo-electron microscopy are spontaneously formed by the Finland trityl radical at concentrations above 15 mM. These species represent a new class of paramagnetic, metal-free, nanoscale supramolecular materials. Self-association was observed under a variety of experimental conditions, including aqueous solution at room temperature, low temperature frozen glasses and the gas phase. Oligomers formed by at least 5 Finland radicals were detected by ion-mobility mass spectrometry. Magnetic susceptibility data as well as low temperature EPR spectra show coupling between electronic spins in the self-assembled species. Quantum chemical calculations show stacking along the C3 symmetry axis. Nanoparticle formation requires additional lateral packing that can be provided by hydrogen bonding involving the triangular array of carboxylic acid groups leading to the assembly of geodesic spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.