Abstract
The (1)H NMR relaxation characteristics of the histidines in the oxidised type-3 copper site of tyrosinase (Ty(met)) from the bacterium Streptomyces antibioticus in the halide-bound forms (Ty(met)X with X = F(-), Cl(-), Br(-)) have been determined and analysed. The (1)H NMR spectra of the Ty(met)X species display remarkably sharp, well-resolved, paramagnetically shifted (1)H signals, which originate from the protons of the six His residues coordinated to the two Cu(II) ions in the type-3 centre. From the temperature-dependence of the (1)H paramagnetic shifts the following values for the exchange-coupling parameter -2J were determined: 260 (Ty(met)F), 200 (Ty(met)Cl) and 162 cm(-1) (Ty(met)Br). The (1)H T(1) relaxation is dipolar in origin and correlates with the Cu--H distances. Electronic relaxation times tau(S) derived from the (1)H T(1) data amount to about 10(-11) s and follow the order Ty(met)F>Ty(met)Cl>Ty(met)Br. They are two orders of magnitude shorter than the tau(S) values reported for mononuclear copper systems, in accordance with the sharpness of the (1)H signals. The results corroborate the Cu(2) bridging mode of the halide ions. On the basis of the measured hyperfine interaction constants for the ligand histidine nuclei, it is concluded that 70-80 % of the spin density in the excited triplet state resides on the two copper ions and the bridging atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.