Abstract
A considerable limitation of NMR spectroscopy is its inherent low sensitivity. Approximately 90 % of the measuring time is used by the spin system to return to its Boltzmann equilibrium after excitation, which is determined by (1)H-T1 in cross-polarized solid-state NMR experiments. It has been shown that sample doping by paramagnetic relaxation agents such as Cu(2+)-EDTA accelerates this process considerably resulting in enhanced sensitivity. Here, we extend this concept to Gd(3+)-complexes. Their effect on (1)H-T1 has been assessed on the membrane protein proteorhodopsin, a 7TM light-driven proton pump. A comparison between Gd(3+)-DOTA, Gd(3+)-TTAHA, covalently attached Cu(2+)-EDTA-tags and Cu(2+)-EDTA reveals a 3.2-, 2.6-, 2.4- and 2-fold improved signal-to-noise ratio per unit time due to longitudinal paramagnetic relaxation enhancement. Furthermore, Gd(3+)-DOTA shows a remarkably high relaxivity, which is 77-times higher than that of Cu(2+)-EDTA. Therefore, an order of magnitude lower dopant concentration can be used. In addition, no line-broadening effects or peak shifts have been observed on proteorhodopsin in the presence of Gd(3+)-DOTA. These favourable properties make it very useful for solid-state NMR experiments on membrane proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.